На дворе стоял 2012 год, и искусственный интеллект Watson разработки IBM был на гребне своей славы. Он победил двух многократных чемпионов игры Jeopardy! (наш аналог — «Своя игра») в 2011 году, и мир был в шоке. Это была первая широкая и успешная демонстрация компьютера, обрабатывающего естественный язык. И благодаря победе в игре, Watson стал популярнее HAL 9000, хоть и не надолго. Позже, в 2012 году, IBM объявила одного из крупнейших практических партнеров Watson — Кливлендскую клинику, которая захотела включить эту систему в свое дело врачей.
Используя Watson для синтеза огромных сумм данных и создания основанных на фактических данных гипотез, появилась надежда, что система поможет врачам и студентам более точно диагностировать заболевание и выбирать лучшие планы лечения для пациентов.
С тех пор прошло четыре года. Как мы знаем, искусственный интеллект должен учиться быстро. Что изменилось для Watson с тех пор?
Долгая дорога доктора Ватсона
Под капотом Watson всегда был (и остается) программным продуктом DeepQA. Если простыми словами, DeepQA — это сложная архитектура программного обеспечения, которая анализирует, размышляет и отвечает на контент, который скармливают Watson. В 2012 году система работала на 80-терафлопсовом компьютере — машине, способной производить 80 000 000 000 000 операций в секунду — расположенном в Йорктаун Хайтсе, штат Нью-Йорк, с серверами в небольшой комнатке.
IBM считала, что Watson может стать «сверхспособной Siri для бизнеса», и он стал. Сегодня он обозначен как когнитивный компьютер для бизнеса. Или, если точнее, «платформа для когнитивного бизнеса».
Вот чем стал Watson: платформой.
Как и обещалось, Watson 2012 года получил мощное обновление. Он уменьшился в размерах, от большой спальни до четырех коробок из-под пиццы, и теперь доступен в облаке на планшете и смартфоне. Система на 240% продуктивнее своего предшественника и может обрабатывать 28 типов (или модулей) данных, по сравнению с 5, которые были раньше.
В 2013 году IBM открыла исходный код API Watson и теперь предлагает IBM Bluemix, комплексную облачную платформу для сторонних разработчиков для создания и запуска приложений на основе внушительных вычислительных возможностей Watson.
Но один из самых больших шагов, которые проделал Watson к своему нынешнему состоянию, произошел в 2014 году, когда IBM инвестировала 1 миллиард долларов в IBM Watson Group, большой отдел, посвященный работе Watson, на 2000 сотрудников.
В этот момент «доктор Ватсон» вышел из яслей стартапа и стал чувствовать себя значительно увереннее. В некотором смысле он стал «как IMB в каждом аспекте».
Перенесемся в 2016 год: сегодня Watson предлагает больше корпоративных сервисов и решений, чем могло бы уместиться в этой статье, — советник по финансам, автоматизированный представитель по обслуживанию клиентов, поисков — что бы вы ни назвали, Watson это умеет, скорее всего.
По мере развития технологии, стоящей за суперкомпьютером 2012 года, развивалось и позиционирование IBM Watson. И в большей степени это позиционирование касалось медицины.
Встречайте доктора Ватсона
Сегодня задачи Watson в сфере здравоохранения определяет новый отдел под названием Watson Health. Это был стратегический шаг, поскольку со времен подключения Кливлендской клиники в 2012 году с Watson завязалось много похожих партнеров.
В 2014 году, например, IBM анонсировала, что онкологи могут использовать Watson для сбора геномических и медицинских данных и разработки более персонализированного лечения. Watson мог, наконец, позволить онкологам «загружать отпечаток ДНК опухоли пациента, который покажет, какие гены мутировали; и Watson может просеивать тысячи мутаций и определять, какие из них вызвали опухоль, после чего настраивать точную схему лечения».
Не так давно Университет Токио использовал Watson для постановки правильного диагноза 60-летнего пациента с лейкемией за счет сопоставления генетических данных миллионов исследовательских работ на тему рака. Это впечатляющий пример, но пока сложно говорить о похожем применении в каждой сфере медицины.
Хотя IBM удвоила силу Watson и добилась определенного успеха, сделать его практическим во всех смыслах этого слова еще только предстоит. В прошлом году Брэндон Кейм из IEEE Spectrum изложил несколько верных причин, почему «доктору Ватсону» еще только предстоит стать настоящим доктором.
«IBM Watson прошел долгий путь, но его прогресс сравнительно с ожиданиями «мгновенного врыва» делает его достижения менее значимыми, — пишет Кейм. — Медицинский искусственный интеллект сейчас сравним с персональными компьютерами 1970-х. Применение искусственного интеллекта в сфере здравоохранения созреет через годы».
Сложные проблемы в системе здравоохранения вроде качества данных также мешают Watson. Электронные медицинские данные часто заполняются с ошибками и изначально оцифровываются для хранения, а не для поиска в них данных. Наконец, обучение Watson представляет собой изнурительный процесс, особенно потому, что дело касается человеческих жизней.
Поиск быстрых ответов на проблемы пациентов имеет мало чего общего с игрой. Watson придется научиться думать, как хороший врач. То есть ему придется находить правильные фрагменты данных, взвешивать доказательства и делать точные выводы.
Чтобы Watson продолжал прогрессировать, ему также придется идти в ногу с современными достижениями в области ИИ. Самым большим изменением с 2012 года стал рост глубокого обучения — метода ИИ, при котором программа самообучается, используя огромные наборы помеченных данных.
Например, преемник Watson, игровой ИИ AlphaGo от Google, представляет собой программу глубокого обучения, которая научилась играть в го лучше всех в мире.
Очевидно, IBM в курсе, что такое глубокое обучение. В прошлом году она рассказала, что также интегрирует подход глубокого обучения в Watson.
Огромные бюджеты посвящаются эволюции следующего поколения чатботов и виртуальных ассистентов, и в этом завязаны самые крупные игроки — включая Google и Facebook. Остается лишь вопрос времени, пока «доктор Ватсон» не станет доступен широкому числу пользователей, может, и под другим именем.