Когда заходит речь о работе с большими данными, многие сразу представляют себе академиков в каком-нибудь научно-исследовательском институте или программистов, которые сидят за компьютером и пишут код 24/7. Поэтому сложилось мнение, что освоить профессию дата-сайентиста непросто (не просто так ведь ее называют одной из самых востребованных!). Но на самом деле большая часть того, что вы знаете о Data Science — это миф. Разберем самые популярные из них.
(adsbygoogle = window.adsbygoogle || []).push({});
Содержание
- 1 Data Science — это только машинное обучение
- 2 Чтобы работать с данными, нужно быть программистом
- 3 Дата-сайентист — это скучно
- 4 Data Science не применяется в повседневной жизни
- 5 Выучиться на дата-сайентиста уже поздно
Data Science — это только машинное обучение
Широко распространено мнение, что дата-сайентисты только и делают, что разрабатывают нейросети и занимаются машинным обучением. Это вовсе не так, наука о данных гораздо более обширна, чем может казаться на первый взгляд. Data Science — это больше про анализ данных, а за машинное обучение отвечает другое ответвление науки о даных — Machine Learning. Дата-сайентист же больше обрабатывает массивы данных, ищет в них закономерности и помогает с их помощью решать различные задачи в бизнесе.
Например, с помощью такого анализа можно выявить, в каких местах клиент банка тратит больше всего, чтобы в следующем месяце предоставить ему эксклюзивное индивидуальное предложение. А чтобы автоматизировать этот процесс, нужны специалисты по машинному обучению, которые могут научить компьютер делать автоматические предсказания. И все это в совокупности является наукой Data Science.
Чтобы работать с данными, нужно быть программистом
Data Science — новая специальность, и у нее нет каких-либо ограничений относительно того, кто может выучиться на нее. Инженер вы или гуманитарий, разобраться в больших данных будет несложно. Главное — подобрать нужный курс, где не просто нужно штудировать учебники, а есть много практических заданий и поддержка преподавателей (менторов), которые помогут, если что-то не получается.
(adsbygoogle = window.adsbygoogle || []).push({});
Ну и, конечно, иметь желание учиться и познавать новое. Конечно, если вы знаете языки программирования и общаетесь с компьютером на «ты», это ускорит процесс освоения специальности, но зачастую наличие другого образования, не связанного с программированием, может стать большим плюсом. Финансисты смогут решать с помощью Data Science задачи, которые касаются их специализации, а биологи — делать новые медицинские открытия.
Например, не так давно команда DеepMind создала алгоритм AlphaFold 2, который помог определить трехмерную структуру белка. Это открытие позволит создать новые лекарственные препараты против болезней, поскольку с помощью структуры ученые будут знать, как работает белок, как он сворачивается и взаимодействует с другими элементами, чтобы его можно было безболезненно использовать в лекарствах.
Дата-сайентист — это скучно
Типичный специалист по работе с данными в глазах большинства выглядит как худощавый паренек в очках, который с утра до ночи работает с таблицами, строит диаграммы и считает, считает, считает. Этот же стереотип ранее применяли относительно программистов, но все изменилось. Достаточно посмотреть сериал «Кремниевая долина», чтобы хотя бы поверхностно понять, с какими задачами сталкиваются дата-сайентисты в современном мире. Это не просто офисные клерки, которые перепечатывают данные из одних таблиц в другие — они часто сталкиваются с задачами, которые вообще никто не решал. И выявляют закономерности, которые простой обыватель в жизни даже не заметил бы.
(adsbygoogle = window.adsbygoogle || []).push({});
Например, проанализировав метеорологические данные, можно предсказать не только, когда будет дождь, снег или ураган, а цены на нефть, чтобы впоследствии применить полученные данные на бирже. Увидеть подобную закономерность под силу далеко не всем.
Data Science не применяется в повседневной жизни
Еще один миф, который сформировался, еще когда эта профессия только получала развитие. Тогда действительно все вычисления оставались в основном на бумаге. Но затем, когда бизнес понял, насколько важны данные, все изменилось. Сейчас вы каждый день видите работу дата-сайентистов, хотя даже не подозреваете об этом. Например, когда заходите в социальную сеть, и там отображается блок с аккаунтами людей, которых вы можете знать. Или выбираете новые категории кэшбека в банковском приложении. Или когда вызываете такси, и система выбирает ближайшего к вам водителя по вашим запросам из десятков других в округе.
Машинное обучение посредством потребления большого количества изображений позволяет, например, с успехом реализовывать проект самоуправляемого автомобиля Google.
(adsbygoogle = window.adsbygoogle || []).push({});
Выучиться на дата-сайентиста уже поздно
А вот и нет, рынок больших данных растет с каждым годом. В связи с этим растет спрос и на профильных специалистов. Так что вы успеете даже не просто запрыгнуть в последний вагон уходящего поезда, а спокойно дойти до локомотива и разместиться с комфортом.
Тем более учиться 4, 5 или 6 лет для того, чтобы стать специалистом по Data Science, не нужно. На курсе Data Science в SkillFactory, который длится 24 месяца, этой профессии учат с нуля, он подойдет и новичкам, и уже работающим программистам.
Студенты курса не только учатся основам работы с большими данными, но и также программированию на Python, основам математики и статистики, осваивают практический machine learning и data engineering. Программа составлена ведущими экспертами в Data Science — NVIDIA и EORA. Преимущество этого курса также в том, что он охватывает основные направления для работы с данными. На каждом этапе курса вы будете решать реальные кейсы, которые станут частью вашего портфолио. Менторы помогут вам дойти до конца обучения, всегда поддержат мотивацию и помогут, если что-то не понятно.
(adsbygoogle = window.adsbygoogle || []).push({});
Читатели Hi-News.ru могут получить скидку 50% на курс* по промокоду Data Sciencе до 25 декабря 2020 года.
Учитывая, что уже через год-два после старта учебы можно устроиться на позицию джуниора с зарплатой 80–120 тысяч рублей, такую возможность лучше не упускать. Востребованность дата-сайентистов растет чуть ли не каждый месяц, особенно в условиях пандемии, когда IT-сфера находится на подъеме и нуждается в новых кадрах.
*Скидка не суммируется со скидками на сайте
{
«@context»: «http://schema.org»,
«@type»: «Article»,
«name»: «Возможно ли стать дата-сайентистом? Развеиваем мифы и страхи о профессии»,
«headline»: «Возможно ли стать дата-сайентистом? Развеиваем мифы и страхи о профессии»,
«author»: {
«@type»: «Person»,
«name»: «Hi-News.ru»
},
«datePublished»: «2020-12-08T13:30:20+03:00»,
«dateModified»: «2020-12-08T13:10:15+03:00»,
«image»: [«https://hi-news.ru/wp-content/uploads/2020/12/myths-650×366.jpg»],
«mainEntityOfPage»: «https://hi-news.ru/promo/vozmozhno-li-stat-data-sajentistom-razveivaem-mify-i-straxi-o-professii.html»,
«publisher»: {
«@type»: «Organization»,
«name»: «Hi-News.ru»,
«logo»: {
«@type»: «ImageObject»,
«url»: «https://hi-news.ru/wp-content/themes/101media/img/hi-apps_mini.jpg»
}
}
}